Zoli's arborescence packing theorems via matroid intersection

Csaba Király¹ Zoltán Szigeti² Shin-ichi Tanigawa³

¹MTA-ELTE Egerváry Research Group on Combinatorial Optimization, and Dept. of Operations Research, ELTE Eötvös Loránd University, Budapest, Hungary

²Univ. Grenoble Alpes, G-SCOP, Grenoble, France

³Department of Mathematical Informatics, Graduate School of Information Science and Technology, University of Tokyo Tokyo, Japan

Combinatorial Optimization Day: Orientations, Matchings and Rigidity 2018. 03. 20.

packing = edge-disjoint subgraphs

Theorem (Tutte, Nash-Williams)

In a graph D = (V, E), there exists a packing of k spanning trees iff

 $e_G(\mathcal{P}) \ge k(|\mathcal{P}|-1)$

holds for every partition \mathcal{P} of V, where $e_{G}(\mathcal{P})$ denotes the number of edges that are not induced by any set of the partition.

Matroid structure behind

graphic matroid = independent sets are edge sets of forests in a graph k-sum of \mathcal{M} = independent sets can be partitioned into k independent sets of \mathcal{M} .

Union of k spanning trees = bases of the k-sum of the graphic matroid.

(日)

packing = edge-disjoint subgraphs

Theorem (Tutte, Nash-Williams)

In a graph D = (V, E), there exists a packing of k spanning trees iff

 $e_G(\mathcal{P}) \geq k(|\mathcal{P}|-1)$

holds for every partition \mathcal{P} of V, where $e_G(\mathcal{P})$ denotes the number of edges that are not induced by any set of the partition.

Matroid structure behind

graphic matroid = independent sets are edge sets of forests in a graph k-sum of \mathcal{M} = independent sets can be partitioned into k independent sets of \mathcal{M} .

Union of k spanning trees = bases of the k-sum of the graphic matroid.

< 日 > < 同 > < 回 > < 回 > < 回 > <

packing = edge-disjoint subgraphs

Theorem (Tutte, Nash-Williams)

In a graph D = (V, E), there exists a packing of k spanning trees iff

 $e_G(\mathcal{P}) \geq k(|\mathcal{P}|-1)$

holds for every partition \mathcal{P} of V, where $e_G(\mathcal{P})$ denotes the number of edges that are not induced by any set of the partition.

Matroid structure behind

graphic matroid = independent sets are edge sets of forests in a graph k-sum of \mathcal{M} = independent sets can be partitioned into k independent sets of \mathcal{M} .

Union of k spanning trees = bases of the k-sum of the graphic matroid.

 ϱ = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k spanning s-arborescences iff

 $\varrho(X) \ge k$

holds for every $\emptyset \neq X \subseteq V$.

Zoli 50 3 / 24

 ϱ = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k spanning s-arborescences iff

$$\varrho(X) \ge k$$

holds for every $\emptyset \neq X \subseteq V$.

Zoli 50 3 / 24

• • • • • • • • • •

 ϱ = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k spanning s-arborescences iff

$$\varrho(X) \ge k$$

holds for every $\emptyset \neq X \subseteq V$.

Remark

The Tutte–Nash-Williams-theorem follows from Edmonds' theorem by using Frank's orientation theorems.

 ϱ = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k spanning s-arborescences iff

$$\varrho(X) \ge k$$

holds for every $\emptyset \neq X \subseteq V$.

Matroid structure behind

Let the independent sets of \mathcal{M}_0 be the arc sets of D with maximum in-degree k on V = direct sum of the uniform matroids of rank k on the incoming arc sets of all vertices in V. Union of k spanning arborescences = common bases of the k-sum of the graphic matroid and \mathcal{M}_0 .

 ϱ = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k spanning s-arborescences iff

$$\varrho(X) \ge k$$

holds for every $\emptyset \neq X \subseteq V$.

Matroid structure behind

Let the independent sets of \mathcal{M}_0 be the arc sets of D with maximum in-degree k on V = direct sum of the uniform matroids of rank k on the incoming arc sets of all vertices in V. Union of k spanning arborescences = common bases of the k-sum of the graphic matroid and \mathcal{M}_0 . \Rightarrow Efficient algorithm for the weighted Let \mathcal{M}_2 be the direct sum of matroids \mathcal{M}_v on the incoming arc sets of all $v \in V$, we get the following. \mathcal{M}_2 -restricted packing = the arc set is independent in \mathcal{M}_2 .

 $\partial_Z(X)$ = the arc set that enters X from Z - X.

Theorem (Frank)

In a rooted digraph D = (V + s, A) with a matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A as above, there exists an \mathcal{M}_2 -restricted packing of k spanning s-arborescences iff

 $r_2(\partial_{V+s}(X)) \ge k$

holds for every $\emptyset \neq X \subseteq V$.

Proof.

Change \mathcal{M}_0 to \mathcal{M}_2 in the previous formulation and use Edmonds' theorem.

Zoli 50 4 / 24

Let \mathcal{M}_2 be the direct sum of matroids \mathcal{M}_v on the incoming arc sets of all $v \in V$, we get the following. \mathcal{M}_2 -restricted packing = the arc set is independent in \mathcal{M}_2 .

 $\partial_Z(X)$ = the arc set that enters X from Z - X.

Theorem (Frank)

In a rooted digraph D = (V + s, A) with a matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A as above, there exists an \mathcal{M}_2 -restricted packing of k spanning s-arborescences iff

$$r_2(\partial_{V+s}(X)) \ge k$$

holds for every $\emptyset \neq X \subseteq V$.

Proof.

Change \mathcal{M}_0 to \mathcal{M}_2 in the previous formulation and use Edmonds' theorem.

Kamiyama, Katoh, Takizawa: If there are no spanning arborescences... When is it possible to pack edge-disjoint "maximal" arborescences?

Reachability *s*-arborescence in *D*: an *s*-arborescence that spans each vertex which is reachable from *s* on a one-way path of *D*.

Theorem (Kamiyama, Katoh and Takizawa)

In a digraph D = (V, A), let $R := \{s_1, ..., s_k\}$ be a multiset of vertices in V. There exists a packing of reachability s_i -arborescences in D (i = 1, ..., k) iff

 $\varrho(X) \ge p_R'(X)$

holds for every $X \subseteq V$ where $p'_R(X)$ denotes the number of s_i 's for which X is reachable from s_i and $s_i \notin X$.

Kamiyama, Katoh, Takizawa: If there are no spanning arborescences... When is it possible to pack edge-disjoint "maximal" arborescences?

Reachability *s*-arborescence in *D*: an *s*-arborescence that spans each vertex which is reachable from *s* on a one-way path of *D*.

Theorem (Kamiyama, Katoh and Takizawa)

In a digraph D = (V, A), let $R := \{s_1, ..., s_k\}$ be a multiset of vertices in V. There exists a packing of reachability s_i -arborescences in D (i = 1, ..., k) iff

 $\varrho(X) \ge \rho_R'(X)$

holds for every $X \subseteq V$ where $p'_R(X)$ denotes the number of s_i 's for which X is reachable from s_i and $s_i \notin X$.

 matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).

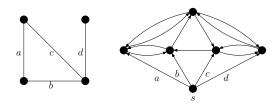


Figure: a matroid-rooted digraph

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .

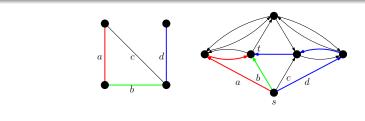


Figure: an \mathcal{M}_1 -based packing of (s, t)-paths $z \to z$

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 6 / 24

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .

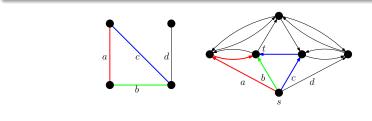


Figure: Not an \mathcal{M}_1 -based packing of (s, t)-paths $s \in \mathbb{R}$

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 6 / 24

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .
- In the second secon

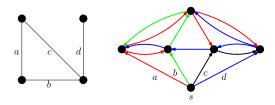


Figure: an \mathcal{M}_1 -based packing of *s*-arborescences (a)

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 6 / 24

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .
- In the second secon

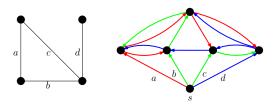


Figure: an \mathcal{M}_1 -based packing of spanning s-arborescences

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

```
Zoli 50 6 / 24
```

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .

Remark

Menger type characterization: \exists an \mathcal{M}_1 -based packing of (s, t)-paths iff $\varrho(X) \ge r_1(\partial_s(V)) - r_1(\partial_s(X))$ ($\forall X \subseteq V$).

- matroid-rooted graph/digraph (G = (V + s, E), M₁)/ (D = (V + s, A), M₁): a matroid M₁ is given on the set of root edges/arcs (leaving s).
- 2 \mathcal{M}_1 -based packing of (s, t)-paths: if the root edges/arcs form a base of \mathcal{M}_1 .
- Solution 3: Solution of s-trees/arborescences: if the packing of (s, t)-paths provided by the trees/arborescences is M₁-based ∀t ∈ V.

Remark

Menger type characterization: \exists an \mathcal{M}_1 -based packing of (s, t)-paths iff $\varrho(X) \ge r_1(\partial_s(V)) - r_1(\partial_s(X))$ ($\forall X \subseteq V$).

Question

Can the above theorems be extended for \mathcal{M}_1 -based packings?

Csaba Király (ELTE-EGRES)

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s, E), M) there exists an M_1 -based packing of spanning s-trees iff

$$e_G(\mathcal{P}) \ge r_1(\partial_s(V)) - \sum_{X \in \mathcal{P}} r_1(\partial_s(X))$$
 for every partition \mathcal{P} of V .

Matroid structure behind

Katoh and Tanigawa also proved that the M_1 -based packings of *s*-trees form the bases of the matroid induced by the following non-negative integer valued, monotone and intersecting submodular function:

$$b'(H) := k|V(H) - s| - k + r_1(H \cap \partial_s(V)) \quad \forall \emptyset \neq H \subseteq A,$$

i.e. the matroid $\mathcal{M}_{b'}$ with independent sets

$\mathcal{I}_{b'} := \{ B \subseteq A : |H| \le b'(H) \; \forall \emptyset \neq H \subseteq B \}.$

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s, E), M) there exists an M_1 -based packing of spanning s-trees iff

$$e_G(\mathcal{P}) \geq r_1(\partial_s(V)) - \sum_{X \in \mathcal{P}} r_1(\partial_s(X))$$
 for every partition \mathcal{P} of V .

Remark

Motivation from rigidity theory! (Title of this workshop: Combinatorial Optimization Day: Orientations, Matchings and Rigidity.)

Matroid structure behind

Katoh and Tanigawa also proved that the M_1 -based packings of s-trees form the bases of the matroid induced by the following non-negative integer valued, monotone and intersecting submodular function:

$b'(H) := k V(H) - s - k + r_1(H \cap \partial_s(V)) \quad \forall 0 \neq H \subset A.$ Csaba Király (ELTE-EGRES) Zoli's arborescence packing theorems Zoli 50

Undirected case

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s, E), M) there exists an \mathcal{M}_1 -based packing of spanning s-trees iff

$$e_G(\mathcal{P}) \geq r_1(\partial_s(V)) - \sum_{X \in \mathcal{P}} r_1(\partial_s(X))$$
 for every partition \mathcal{P} of V .

Matroid structure behind

Katoh and Tanigawa also proved that the \mathcal{M}_1 -based packings of s-trees form the bases of the matroid induced by the following non-negative integer valued, monotone and intersecting submodular function:

$$b'(H) := k|V(H) - s| - k + r_1(H \cap \partial_s(V)) \quad \forall \emptyset \neq H \subseteq A,$$

i.e. the matroid $\mathcal{M}_{b'}$ with independent sets

$$\mathcal{I}_{b'} := \{ B \subseteq A : |H| \le b'(H) \; \forall \emptyset \neq H \subseteq B \}.$$

Csaba Király (ELTE-EGRES)

Theorem (Durand de Gevigney, Nguyen and Szigeti) In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning s-arborescences iff there exists an M_1 -based packing of (s, v)-paths for every $v \in V$, i.e.

$$\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$$

Remark

The Katoh–Tanigawa-theorem follows from this theorem by using Frank's orientation theorems.

Matroid structure behind

Edge sets of M_1 -based packing of *s*-arborescences = common bases of $M_{b'}$ and M_0 .

Theorem (Durand de Gevigney, Nguyen and Szigeti) In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning s-arborescences iff there exists an M_1 -based packing of (s, v)-paths for every $v \in V$, i.e.

$$\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$$

Remark

The Katoh–Tanigawa-theorem follows from this theorem by using Frank's orientation theorems.

Matroid structure behind

Edge sets of M_1 -based packing of *s*-arborescences = common bases of $M_{b'}$ and M_0 .

Zoli 50 8 / 24

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Durand de Gevigney, Nguyen and Szigeti) In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning s-arborescences iff there exists an M_1 -based packing of (s, v)-paths for every $v \in V$, i.e.

$$\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$$

Remark

The Katoh–Tanigawa-theorem follows from this theorem by using Frank's orientation theorems.

Matroid structure behind

Edge sets of \mathcal{M}_1 -based packing of *s*-arborescences = common bases of $\mathcal{M}_{b'}$ and \mathcal{M}_0 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

In a matroid-rooted digraph ($D = (V + s, A), M_1$) with another matroid $M_2 = \bigoplus_{v \in V} M_v$ on A, there exists an M_1 -based M_2 -restricted packing of spanning s-arborescences iff

$$r_1(F) + r_2(\partial(X) - F) \ge r_1(\partial_s(V))$$
 for all $\emptyset \neq X \subseteq V$ and $F \subseteq \partial_s(X)$.

Proof.

Change \mathcal{M}_0 to \mathcal{M}_2 in the previous formulation and use the Durand de Gevigney–Nguyen–Szigeti-theorem.

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

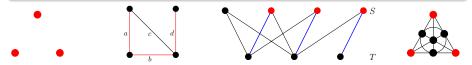
$$\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$$

Csaba Király (ELTE-EGRES)

Zoli 50 10 / 24

Examples

- Free : all subsets of a set,
- Graphic : edge-sets of forests of a graph,
- Transversal: end-nodes in S of matchings of bipartite graph (S, T; E)
- Fano: subsets of sets of size 3 not being a line in the Fano plane.



Zoli 50 11 / 24

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic of
- is transversal.

The conjecture is false!

The corresponding decision problem is NP-hard.

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is false! The corresponding decision problem is NP-han

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is false! The corresponding decision problem is NP-h

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is f<mark>alse</mark>! The corresponding decision problem is <mark>NP-hard</mark>

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.
- The conjecture is false!

The corresponding decision problem is NP-hard.

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -based packing of spanning *s*-arborescences iff

 $\varrho(X) \geq r_1(\mathcal{M}) - r_1(\partial_s(X)) \; (\forall \emptyset \neq X \subseteq V).$

Theorem (Fortier, K., Szigeti, Tanigawa)

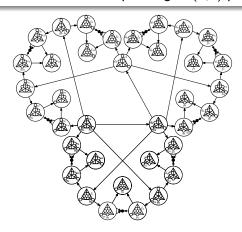
The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is false! The corresponding decision problem is NP-hard.

Counterexample

Digraph : acyclic, in-degree 3 for all $v \in V$, 46 nodes and 135 arcs, Matroid : parallel extension of Fano with 64 elements, Remark : matroid-based packing of (s, t)-paths exists for all t.



Zoli 50 13 / 24

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is false! The corresponding decision problem is NP-hard.

Remarks

- *M*₁-based packing of spanning *s*-trees: same results by orientation and the structure of the counterexample
- M_1 -based M_2 -restricted packing of spanning *s*-arborescences: same positive results

Zoli 50 14 / 24

4 D K 4 B K 4 B K 4

Theorem (Fortier, K., Szigeti, Tanigawa)

The conjecture is true when the matroid \mathcal{M}_1

- has rank at most 2 or
- is graphic or
- is transversal.

The conjecture is false! The corresponding decision problem is NP-hard.

Remarks

- *M*₁-based packing of spanning *s*-trees: same results by orientation and the structure of the counterexample
- M_1 -based M_2 -restricted packing of spanning *s*-arborescences: same positive results

Zoli 50 14 / 24

4 D K 4 B K 4 B K 4

 $P(X) = \{v \in V : \exists a \text{ one-way path from } v \text{ to } X\}. (X \subseteq P(X))$ \mathcal{M}_1 -reachability-based packing of (s, t)-paths: if the root arcs form a base of $\mathcal{M}_1|_{\partial_s(P(t))}$. \mathcal{M}_1 -reachability-based packing of *s*-arborescences: if the packing of (s, t)-paths provided by the arborescences is \mathcal{M}_1 -reachability-based $\forall t \in V$.

Theorem (K.)

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -reachability-based packing of s-arborescences iff

 $\varrho(X) \geq r_1(\partial_s(\mathcal{P}(X))) - r_1(\partial_s(X)) \; (\forall X \subseteq V).$

Csaba Király (ELTE-EGRES)

Zoli 50 15 / 24

Biset $X = (X_O, X_I)$: $X_I \subseteq X_O \subseteq V$ \mathcal{P}_2 = all bisets on V

 $\begin{array}{l} \mathsf{X} \cap \mathsf{Y} = (\mathsf{X}_{\mathsf{O}} \cap \mathsf{Y}_{\mathsf{O}}, \mathsf{X}_{\mathsf{I}} \cap \mathsf{Y}_{\mathsf{I}}) \\ \mathsf{X} \cup \mathsf{Y} = (\mathsf{X}_{\mathsf{O}} \cup \mathsf{Y}_{\mathsf{O}}, \mathsf{X}_{\mathsf{I}} \cup \mathsf{Y}_{\mathsf{I}}) \\ \mathsf{X} \text{ and } \mathsf{Y} \text{ are intersecting} = \mathsf{X}_{\mathsf{I}} \cap \mathsf{Y}_{\mathsf{I}} \neq \emptyset \\ b : \mathcal{P}_{2} \to \mathbb{Z}_{+} \cup \{\infty\} \text{ is intersecting submodular} = \\ b(\mathsf{X}) + b(\mathsf{Y}) \geq b(\mathsf{X} \cup \mathsf{Y}) + b(\mathsf{X} \cap \mathsf{Y}) \text{ for every intersecting } X, Y \in \mathcal{P}_{2}. \\ D = (V, A), B \subseteq A, \mathsf{X} \in \mathcal{P}_{2}. \\ B(\mathsf{X}) = \arcsin n B \text{ with tail in } \mathsf{X}_{\mathsf{O}} \text{ and head in } \mathsf{X}_{\mathsf{I}}. \\ i_{B}(\mathsf{X}) = |B(\mathsf{X})| \end{array}$

Biset $X = (X_0, X_1)$: $X_1 \subset X_0 \subset V$ \mathcal{P}_2 = all bisets on V $X \cap Y = (X_{\Omega} \cap Y_{\Omega}, X_{I} \cap Y_{I})$ $X \cup Y = (X_{\Omega} \cup Y_{\Omega}, X_{I} \cup Y_{I})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Biset $X = (X_0, X_1)$: $X_1 \subset X_0 \subset V$ \mathcal{P}_2 = all bisets on V $X \cap Y = (X_{\Omega} \cap Y_{\Omega}, X_{I} \cap Y_{I})$ $X \cup Y = (X_{\Omega} \cup Y_{\Omega}, X_{I} \cup Y_{I})$ X and Y are intersecting = $X_I \cap Y_I \neq \emptyset$

Biset $X = (X_0, X_1)$: $X_1 \subset X_0 \subset V$ \mathcal{P}_2 = all bisets on V $X \cap Y = (X_{\Omega} \cap Y_{\Omega}, X_{I} \cap Y_{I})$ $X \cup Y = (X_{\Omega} \cup Y_{\Omega}, X_{I} \cup Y_{I})$ X and Y are intersecting = $X_I \cap Y_I \neq \emptyset$ $b: \mathcal{P}_2 \to \mathbb{Z}_+ \cup \{\infty\}$ is intersecting submodular = $b(X) + b(Y) > b(X \cup Y) + b(X \cap Y)$ for every intersecting $X, Y \in \mathcal{P}_2$.

Zoli 50 16 / 24

Biset $X = (X_0, X_1)$: $X_1 \subset X_0 \subset V$ \mathcal{P}_2 = all bisets on V $X \cap Y = (X_{\Omega} \cap Y_{\Omega}, X_{I} \cap Y_{I})$ $X \cup Y = (X_{\Omega} \cup Y_{\Omega}, X_{I} \cup Y_{I})$ X and Y are intersecting = $X_I \cap Y_I \neq \emptyset$ $b: \mathcal{P}_2 \to \mathbb{Z}_+ \cup \{\infty\}$ is intersecting submodular = $b(X) + b(Y) > b(X \cup Y) + b(X \cap Y)$ for every intersecting $X, Y \in \mathcal{P}_2$. $D = (V, A), B \subseteq A, X \in \mathcal{P}_2.$ B(X) = arcs in B with tail in X_0 and head in X_1 . $i_B(X) = |B(X)|$

Matroids from submodular bi-set functions

Theorem

Let D = (V, A) be a digraph and $b : \mathcal{P}_2 \to \mathbb{Z}_+ \cup \{\infty\}$ an intersecting submodular bi-set function. Then

$$\boldsymbol{\mathcal{I}} := \{\boldsymbol{B} \subseteq \boldsymbol{A} : i_{\boldsymbol{B}}(\boldsymbol{X}) \leq \boldsymbol{b}(\boldsymbol{X}) \; \forall \boldsymbol{X} \in \mathcal{P}_2\}$$

forms the family of independent sets of a matroid \mathcal{M}_b on A.

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 17 / 24

We give the construction directly for \mathcal{M}_2 -restricted \mathcal{M}_1 -reachability-based packings.

Assumptions

(A1) $\partial_s(v)$ is independent in \mathcal{M}_1 for every $v \in V$ (A2) each root arc belongs to every base of \mathcal{M}_2 ; (A3) $r_2(\partial(v)) \leq r_1(\partial_s(P(v)))$ for all $v \in V$.

These can be assumed by simple modifications of the input (adding an extra vertex in the middle of each root arc and truncating M_2 .) When the packing exists, in fact, (A3) turns to

(A3') $r_2(\partial(v)) = r_1(\partial_s(P(v))) =: m(v)$ for all $v \in V$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We give the construction directly for \mathcal{M}_2 -restricted \mathcal{M}_1 -reachability-based packings.

Assumptions

(A1) $\partial_s(v)$ is independent in \mathcal{M}_1 for every $v \in V$;

(A2) each root arc belongs to every base of \mathcal{M}_2 ;

(A3) $r_2(\partial(v)) \leq r_1(\partial_s(P(v)))$ for all $v \in V$.

These can be assumed by simple modifications of the input (adding an extra vertex in the middle of each root arc and truncating M_2 .) When the packing exists, in fact, (A3) turns to

(A3') $r_2(\partial(v)) = r_1(\partial_s(P(v))) =: m(v)$ for all $v \in V$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We give the construction directly for \mathcal{M}_2 -restricted \mathcal{M}_1 -reachability-based packings.

Assumptions

(A1) $\partial_s(v)$ is independent in \mathcal{M}_1 for every $v \in V$;

(A2) each root arc belongs to every base of \mathcal{M}_2 ;

(A3) $r_2(\partial(v)) \leq r_1(\partial_s(P(v)))$ for all $v \in V$.

These can be assumed by simple modifications of the input (adding an extra vertex in the middle of each root arc and truncating \mathcal{M}_2 .) When the packing exists, in fact, (A3) turns to (A3') $r_2(\partial(v)) = r_1(\partial_s(P(v))) =: m(v)$ for all $v \in V$.

We give the construction directly for \mathcal{M}_2 -restricted \mathcal{M}_1 -reachability-based packings.

Assumptions

(A1) $\partial_s(v)$ is independent in \mathcal{M}_1 for every $v \in V$;

(A2) each root arc belongs to every base of \mathcal{M}_2 ;

(A3) $r_2(\partial(v)) \leq r_1(\partial_s(P(v)))$ for all $v \in V$.

These can be assumed by simple modifications of the input (adding an extra vertex in the middle of each root arc and truncating \mathcal{M}_2 .) When the packing exists, in fact, (A3) turns to

(A3') $r_2(\partial(v)) = r_1(\partial_s(P(v))) =: m(v)$ for all $v \in V$.

 $u \sim v = P(u) = P(v)$ Atoms = equivalence classes of ~

$$\begin{split} \mathcal{F} &:= \{ \mathsf{X} \in \mathcal{P}_2 : \exists \text{ atom } \mathsf{A} : \emptyset \neq \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{A}, (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{A} = \emptyset \}, \\ \mathbf{I}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_i, \mathbf{e}_i \notin \partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}}), (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{U}_i = \emptyset \} \quad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathbf{J}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_i \} \setminus \mathsf{I}_{\mathsf{X}} \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathbf{b}(\mathsf{X}) &:= \widetilde{m}(\mathsf{X}_{\mathsf{I}}) - |\partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}})| - \mathsf{r}_1(\mathsf{I}_{\mathsf{X}} \cup \mathsf{J}_{\mathsf{X}}) + \mathsf{r}_1(\mathsf{J}_{\mathsf{X}}) \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ &:= +\infty \qquad (\forall \mathsf{X} \notin \mathcal{F}). \end{split}$$

Remark

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 19 / 24

 $u \sim v = P(u) = P(v)$ Atoms = equivalence classes of ~

$$\begin{split} \mathcal{F} &:= \{ \mathsf{X} \in \mathcal{P}_2 : \exists \text{ atom } \mathsf{A} : \emptyset \neq \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{A}, (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{A} = \emptyset \}, \\ \mathbf{I}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_{\mathsf{i}}, \mathbf{e}_{\mathsf{i}} \notin \partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}}), (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{U}_{\mathsf{i}} = \emptyset \} \quad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathbf{J}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_{\mathsf{i}} \} \setminus \mathsf{I}_{\mathsf{X}} \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathsf{b}(\mathsf{X}) &:= \widetilde{m}(\mathsf{X}_{\mathsf{I}}) - |\partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}})| - \mathsf{r}_1(\mathsf{I}_{\mathsf{X}} \cup \mathsf{J}_{\mathsf{X}}) + \mathsf{r}_1(\mathsf{J}_{\mathsf{X}}) \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ &:= +\infty \qquad (\forall \mathsf{X} \notin \mathcal{F}). \end{split}$$

Remark

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 19 / 24

 $u \sim v = P(u) = P(v)$ Atoms = equivalence classes of ~

$$\begin{split} \mathcal{F} &:= \{ \mathsf{X} \in \mathcal{P}_2 : \exists \text{ atom } \mathsf{A} : \emptyset \neq \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{A}, (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{A} = \emptyset \}, \\ \mathbf{I}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_{\mathsf{i}}, \mathbf{e}_{\mathsf{i}} \notin \partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}}), (\mathsf{X}_{\mathsf{O}} \setminus \mathsf{X}_{\mathsf{I}}) \cap \mathsf{U}_{\mathsf{i}} = \emptyset \} \quad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathbf{J}_{\mathsf{X}} &:= \{ \mathbf{e}_i \in \partial_s^{\mathsf{A}}(V) : \mathsf{X}_{\mathsf{I}} \subseteq \mathsf{U}_{\mathsf{i}} \} \setminus \mathsf{I}_{\mathsf{X}} \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ \mathsf{b}(\mathsf{X}) &:= \widetilde{m}(\mathsf{X}_{\mathsf{I}}) - |\partial_s^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}})| - \mathsf{r}_1(\mathsf{I}_{\mathsf{X}} \cup \mathsf{J}_{\mathsf{X}}) + \mathsf{r}_1(\mathsf{J}_{\mathsf{X}}) \qquad (\forall \mathsf{X} \in \mathcal{F}), \\ &:= +\infty \qquad (\forall \mathsf{X} \notin \mathcal{F}). \end{split}$$

Remark

$$I_{\mathsf{X}} \cup J_{\mathsf{X}} = \partial_{s}(P(\mathsf{X}_{\mathsf{I}})).$$

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 19 / 24

$$b(\mathsf{X}) := \widetilde{\textit{m}}(\mathsf{X}_{\mathsf{I}}) - |\partial_{\mathsf{s}}^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}})| - (\mathsf{r}_{\mathsf{1}}(\mathsf{I}_{\mathsf{X}} \cup \mathsf{J}_{\mathsf{X}}) - \mathsf{r}_{\mathsf{1}}(\mathsf{J}_{\mathsf{X}})) \qquad (\forall \mathsf{X} \in \mathcal{F})$$

Lemma (implicitly in Bérczi, T. Király, Kobayashi)

Let $B \subseteq A$ for a given D = (V + s, A). The following two conditions are equivalent:

 $\begin{aligned} |\partial_{V}^{B}(X)| &\geq r_{1}(\partial_{s}^{A}(P_{D}(X))) - r_{1}(\partial_{s}^{A}(X)) \qquad (\forall X \subseteq V) \\ |\partial_{V}^{B}(X)| &\geq r_{1}(I_{X} \cup J_{X}) - r_{1}(J_{X}) \qquad (\forall X \in \mathcal{F}) \end{aligned}$

Theorem (K.)

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -reachability-based packing of s-arborescences iff

$\varrho(X) = |\partial^{\mathcal{A}}(X)| \geq r_1(\partial^{\mathcal{A}}_{s}(\mathcal{P}(X))) - r_1(\partial^{\mathcal{A}}_{s}(X)) \; (\forall X \subseteq V).$

$$b(\mathsf{X}) := \widetilde{\textit{m}}(\mathsf{X}_{\mathsf{I}}) - |\partial_{\mathsf{s}}^{\mathsf{A}}(\mathsf{X}_{\mathsf{I}})| - (\mathsf{r}_{\mathsf{1}}(\mathsf{I}_{\mathsf{X}} \cup \mathsf{J}_{\mathsf{X}}) - \mathsf{r}_{\mathsf{1}}(\mathsf{J}_{\mathsf{X}})) \qquad (\forall \mathsf{X} \in \mathcal{F})$$

Lemma (implicitly in Bérczi, T. Király, Kobayashi)

Let $B \subseteq A$ for a given D = (V + s, A). The following two conditions are equivalent:

 $\begin{aligned} |\partial_{V}^{B}(X)| &\geq r_{1}(\partial_{s}^{A}(P_{D}(X))) - r_{1}(\partial_{s}^{A}(X)) \qquad (\forall X \subseteq V) \\ |\partial_{V}^{B}(X)| &\geq r_{1}(I_{X} \cup J_{X}) - r_{1}(J_{X}) \qquad (\forall X \in \mathcal{F}) \end{aligned}$

Theorem (K.)

In a matroid-rooted digraph ($D = (V + s, A), M_1$) there exists an M_1 -reachability-based packing of s-arborescences iff

$$\varrho(X) = |\partial^{\mathcal{A}}(X)| \geq r_1(\partial^{\mathcal{A}}_{s}(\mathcal{P}(X))) - r_1(\partial^{\mathcal{A}}_{s}(X)) \; (\forall X \subseteq V).$$

Lemma b is an intersecting submodular bi-set function.

$\mathcal{I}^* := \{B \subseteq A : i_B(\mathsf{X}) \le \mathsf{b}(\mathsf{X}) \; \forall \mathsf{X} \in \mathcal{P}_2\}$

forms the family of independent sets of a matroid \mathcal{M}^* on A.

Theorem

Let $(D = (V + s, A), M_1)$ be a matroid-rooted digraph with another matroid $M_2 = \bigoplus_{v \in V} M_v$ on A. Suppose that (A1), (A2) and (A3') are satisfied. Then $B \subseteq A$ is the arc set of an M_1 -reachability-based M_2 -restricted packing of s-arborescences if and only if B is a common independent set of M_2 and M^* of size $\tilde{m}(V)$.

Lemma

b is an intersecting submodular bi-set function.

$$\mathcal{I}^* := \{ B \subseteq A : i_B(\mathsf{X}) \le \mathsf{b}(\mathsf{X}) \ \forall \mathsf{X} \in \mathcal{P}_2 \}$$

forms the family of independent sets of a matroid \mathcal{M}^* on A.

Theorem

Let $(D = (V + s, A), \mathcal{M}_1)$ be a matroid-rooted digraph with another matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A. Suppose that (A1), (A2) and (A3') are satisfied. Then $B \subseteq A$ is the arc set of an \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of s-arborescences if and only if B is a common independent set of \mathcal{M}_2 and \mathcal{M}^* of size $\widetilde{m}(V)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $(D = (V + s, A), \mathcal{M}_1)$ be a matroid-rooted digraph with another matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A. There exists a polynomial algorithm to find an \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of s-arborescences in D of minimum weight if D has at least one such packing.

Theorem

Let $(D = (V + s, A), M_1)$ be a matroid-rooted digraph with another matroid $M_2 = \bigoplus_{v \in V} M_v$ on A. There exists an M_1 -reachability-based M_2 -restricted packing of s-arborescences in D if and only if

 $r_1(F) + r_2(\partial(X) - F) \ge r_1(\partial_s(P(X)))$ for all $X \subseteq V$ and $F \subseteq \partial_s(X)$.

イロト 不得 トイヨト イヨト

Let $(D = (V + s, A), \mathcal{M}_1)$ be a matroid-rooted digraph with another matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A. There exists a polynomial algorithm to find an \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of s-arborescences in D of minimum weight if D has at least one such packing.

Theorem

Let $(D = (V + s, A), \mathcal{M}_1)$ be a matroid-rooted digraph with another matroid $\mathcal{M}_2 = \bigoplus_{v \in V} \mathcal{M}_v$ on A. There exists an \mathcal{M}_1 -reachability-based \mathcal{M}_2 -restricted packing of s-arborescences in D if and only if

 $r_1(F) + r_2(\partial(X) - F) \ge r_1(\partial_s(P(X)))$ for all $X \subseteq V$ and $F \subseteq \partial_s(X)$.

Zoli still works on this topic.

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

2 23/24 Zoli 50

• • • • • • • • • • • • •

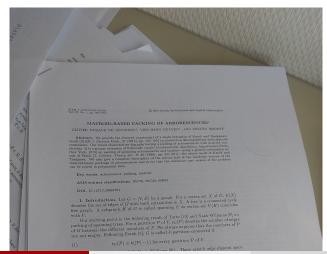
Theorem *Zoli still works on this topic.*

Proof.

Csaba Király (ELTE-EGRES)

Zoli still works on this topic.

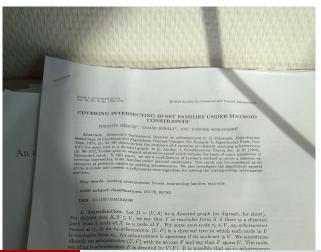
Proof.



Csaba Király (ELTE-EGRES)

Zoli still works on this topic.

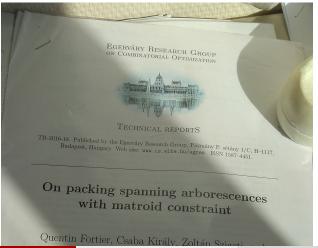
Proof.



Csaba Király (ELTE-EGRES)

Zoli still works on this topic.

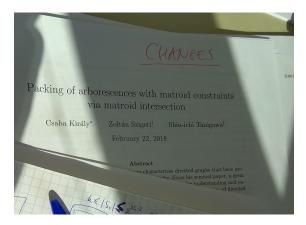
Proof.



Csaba Király (ELTE-EGRES)

Zoli still works on this topic.

Proof.



Thank you for your attention! Happy Birthday Zoli!

Csaba Király (ELTE-EGRES)

Zoli's arborescence packing theorems

Zoli 50 24 / 24