GSCOP RUB Production 2022

Thèse Sylvain DUCOMMAN

Auteur : Sylvain DUCOMMAN
Directeur de thèse : Bernard PENZ
Co-encadrant : Hadrien CAMBAZARD 
Date : 9 mai 2017

Optimisation de tournées de véhicules par programmation par contraintes : conception et développement d’un solveur industriel


Les problèmes de tournées de véhicules sont des problèmes d’optimisation combinatoire épineux avec des enjeux économiques et environnementaux importants au sein de la chaîne logistique. Le problème fondamental est de desservir des clients avec un ensemble de véhicules de façon à minimiser la distance totale parcourue. En pratique, il y a une grande variété d’objectifs et de contraintes additionnelles, liées à la législation et à la diversité des domaines d’applications. Ces problèmes de tournées sont très fréquents pour de nombreuses industries et la conception d’approches de résolution génériques est devenue une question de recherche importante. 
 
Cette thèse porte sur la conception et le développement d’un nouveau moteur de résolution pour les logiciels de tournées de véhicules proposés par l’entreprise GEOCONCEPT. Le solveur mis au point s’appuie sur la programmation par contraintes (PPC) pour améliorer la flexibilité (prise en compte de contraintes additionnelles), la déclarativité et la maintenance qui sont les limites des solveurs actuels de GEOCONCEPT fondés sur la recherche locale. 
 
Dans un premier temps, un modèle de graphe est établi pour la représentation unifiée des données et de nombreuses contraintes métiers. La résolution s’effectue par des approches à base de voisinage large disponibles dans les solveurs de PPC modernes. On peut ainsi traiter des instances de très grandes tailles efficacement tout en conservant une approche déclarative pour exprimer une classe très large de problèmes de tournées de véhicules. Dans un second temps, des modèles PPC s’appuyant sur des représentations redondantes du problème sont proposés afin de renforcer le filtrage. Nous nous intéressons en détails aux mécanismes de filtrage c’est-à-dire aux processus d’élimination des valeurs infaisables ou sous-optimales dans les domaines des variables. Ces algorithmes permettent de simplifier rapidement le problème et de fournir des bornes inférieures afin d’évaluer la qualité des solutions obtenues. Les bornes inférieures sont obtenues en résolvant des relaxations du plus célèbre des problèmes de la Recherche Opérationnelle : le problème du voyageur de commerce (TSP). Ce problème est le cœur de la contrainte globale weightedcircuit permettant de modéliser les problèmes de tournées en PPC. Nous proposons de nouveaux mécanismes de filtrage pour cette contrainte s’appuyant sur trois relaxations du TSP. Ces relaxations sont comparées sur les plans théorique et expérimental. L’originalité de ce travail est de proposer un nouvel algorithme de filtrage permettant de raisonner à la fois sur les successeurs directs d’un client et sur sa position dans la tournée. Ces raisonnements sont particulièrement utiles en présence de contraintes de fenêtres de temps, très communes dans les problèmes industriels. 
 
Le nouveau moteur de résolution offre d’excellentes performances sur des problèmes académiques et industriels tout en proposant des bornes inférieures informatives à des problèmes industriels réels.